86 research outputs found

    Post-fire behaviour of concrete containing nano-materials as a cement replacement material

    Get PDF
    Cement replacement materials have been the subject of increasing levels of research and development in recent years. These products are employed for many reasons, including to modify the properties of concrete, although the most urgent need for their use currently is to produce more sustainable concrete and reduce waste. Recently, nanomaterials such as nano-fly ash and nano-metakaolin have been studied as cement replacement materials as they tend to fill the pores present in the matrix, thereby increasing the density of the concrete resulting in an enhanced hydration process and greater mechanical performance. This paper is concerned with the post-fire mechanical and durability behaviour of concrete containing nanomaterials as a cement replacement material, for which there is no information available currently. The key information and results from an experimental investigation are presented and discussed. The experimental programme studied both nano-fly ash and nano-metakaolin with a cement replacement ratio of between 5% and 25%. The specimens were subjected to a standard fire and then cooled either slowly, in air, or quickly in water. Based on the test data, it is concluded that the presence of either of these nanomaterials in concrete reduces the pore volume and increases the pozzolanic activities in the mix, leading to enhanced mechanical and durability behaviour compared with traditional concrete. The optimization trials indicate that the best replacement ratios are 20% for the nano-fly ash and 15% for the nano-metakaolin. Overall, following elevated temperature exposure, the concretes containing nano-fly ash performed better than the concretes with nano-metakaolin but both out-performed traditional cement-based concrete

    Failure assessment of lightly reinforced floor slabs. I: Experimental investigation

    Get PDF
    This paper is concerned with the ultimate behavior of lightly reinforced concrete floor slabs under extreme loading conditions. Particular emphasis is given to examining the failure conditions of idealized composite slabs which become lightly reinforced in a fire situation as a result of the early loss of the steel deck. An experimental study is described which focuses on the response of two-way spanning floor slabs with various materials and geometric configurations. The tests enable direct assessment of the influence of a number of key parameters such as the reinforcement type, properties, and ratio on the ultimate response. The results also permit the development of simplified expressions that capture the influence of salient factors such as bond characteristics and reinforcement properties for predicting the ductility of lightly reinforced floor slabs. The companion paper complements the experimental observations with detailed numerical assessments of the ultimate response and proposes analytical models that predict failure of slab members by either reinforcement fracture or compressive crushing of concrete. © 2011 American Society of Civil Engineers

    Ultimate behavior of idealized composite floor elements at ambient and elevated temperature

    Get PDF
    This paper is concerned with the ultimate behavior of composite floor slabs under extreme loading situations resembling those occurring during severe building fires. The study focuses on the failure state associated with rupture of the reinforcement in idealized slab elements, which become lightly reinforced in a fire situation due to the early loss of the steel deck. The paper describes a fundamental approach for assessing the failure limit associated with reinforcement fracture in lightly reinforced beams, representing idealized slab strips. A description of the ambient-temperature tests on isolated restrained elements, carried out to assess the influence of key material parameters on the failure conditions, is firstly presented. The results of a series of material tests, undertaken mainly to examine the effect of elevated temperature on ductility, are also described. A simplified analytical model is employed, in conjunction with the experimental findings, to assess the salient material parameters and their implications on the ultimate response at both ambient and elevated temperature. © 2009 Springer Science+Business Media, LLC

    A Game Theoretical Method for Cost-Benefit Analysis of Malware Dissemination Prevention

    Get PDF
    Copyright © Taylor & Francis Group, LLC. Literature in malware proliferation focuses on modeling and analyzing its spread dynamics. Epidemiology models, which are inspired by the characteristics of biological disease spread in human populations, have been used against this threat to analyze the way malware spreads in a network. This work presents a modified version of the commonly used epidemiology models Susceptible Infected Recovered (SIR) and Susceptible Infected Susceptible (SIS), which incorporates the ability to capture the relationships between nodes within a network, along with their effect on malware dissemination process. Drawing upon a model that illustrates the network’s behavior based on the attacker’s and the defender’s choices, we use game theory to compute optimal strategies for the defender to minimize the effect of malware spread, at the same time minimizing the security cost. We consider three defense mechanisms: patch, removal, and patch and removal, which correspond to the defender’s strategy and use probabilistically with a certain rate. The attacker chooses the type of attack according to its effectiveness and cost. Through the interaction between the two opponents we infer the optimal strategy for both players, known as Nash Equilibrium, evaluating the related payoffs. Hence, our model provides a cost-benefit risk management framework for managing malware spread in computer networks

    NRXN3 Is a Novel Locus for Waist Circumference: A Genome-Wide Association Study from the CHARGE Consortium

    Get PDF
    Central abdominal fat is a strong risk factor for diabetes and cardiovascular disease. To identify common variants influencing central abdominal fat, we conducted a two-stage genome-wide association analysis for waist circumference (WC). In total, three loci reached genome-wide significance. In stage 1, 31,373 individuals of Caucasian descent from eight cohort studies confirmed the role of FTO and MC4R and identified one novel locus associated with WC in the neurexin 3 gene [NRXN3 (rs10146997, p = 6.4×10−7)]. The association with NRXN3 was confirmed in stage 2 by combining stage 1 results with those from 38,641 participants in the GIANT consortium (p = 0.009 in GIANT only, p = 5.3×10−8 for combined analysis, n = 70,014). Mean WC increase per copy of the G allele was 0.0498 z-score units (0.65 cm). This SNP was also associated with body mass index (BMI) [p = 7.4×10−6, 0.024 z-score units (0.10 kg/m2) per copy of the G allele] and the risk of obesity (odds ratio 1.13, 95% CI 1.07–1.19; p = 3.2×10−5 per copy of the G allele). The NRXN3 gene has been previously implicated in addiction and reward behavior, lending further evidence that common forms of obesity may be a central nervous system-mediated disorder. Our findings establish that common variants in NRXN3 are associated with WC, BMI, and obesity

    General anaesthetic and airway management practice for obstetric surgery in England: a prospective, multi-centre observational study

    Get PDF
    There are no current descriptions of general anaesthesia characteristics for obstetric surgery, despite recent changes to patient baseline characteristics and airway management guidelines. This analysis of data from the direct reporting of awareness in maternity patients' (DREAMY) study of accidental awareness during obstetric anaesthesia aimed to describe practice for obstetric general anaesthesia in England and compare with earlier surveys and best-practice recommendations. Consenting patients who received general anaesthesia for obstetric surgery in 72 hospitals from May 2017 to August 2018 were included. Baseline characteristics, airway management, anaesthetic techniques and major complications were collected. Descriptive analysis, binary logistic regression modelling and comparisons with earlier data were conducted. Data were collected from 3117 procedures, including 2554 (81.9%) caesarean deliveries. Thiopental was the induction drug in 1649 (52.9%) patients, compared with propofol in 1419 (45.5%). Suxamethonium was the neuromuscular blocking drug for tracheal intubation in 2631 (86.1%), compared with rocuronium in 367 (11.8%). Difficult tracheal intubation was reported in 1 in 19 (95%CI 1 in 16-22) and failed intubation in 1 in 312 (95%CI 1 in 169-667). Obese patients were over-represented compared with national baselines and associated with difficult, but not failed intubation. There was more evidence of change in practice for induction drugs (increased use of propofol) than neuromuscular blocking drugs (suxamethonium remains the most popular). There was evidence of improvement in practice, with increased monitoring and reversal of neuromuscular blockade (although this remains suboptimal). Despite a high risk of difficult intubation in this population, videolaryngoscopy was rarely used (1.9%)

    Post-fire mechanical properties of carbon steel and safety factors for the reinstatement of steel structures

    Get PDF
    This paper provides guidance on the post-fire material properties and associated safety factors for structural carbon steel which are required for the assessment and retrofitting of existing steel buildings which have suffered and survived a fire. Nowadays, there is a discrepancy between the methodology which is used in the design stage of a building (mostly based on the partial factor method) and the verification methods used after a fire. In the past decade, a number of researchers have published test data and there is more information available on the mechanical properties of steel following a fire. Nevertheless, a statistical evaluation of these results has yet to be conducted although design codes generally adopt a reliability-based approach for the analysis and assessment of buildings. To fill this gap of knowledge, the current article includes a statistical evaluation of the mechanical data from 718 tests collected from 19 peer-reviewed articles and doctoral theses. The study is done for hot-rolled steel, cold-formed steel as well as wrought or cast iron. By focusing on the effect of a fire on the mechanical properties after cooling, which is mostly related to how the coefficient of variation of their distribution increases, adjusted safety factors are proposed together with a reduced reliability index based on economic and social considerations. It is contended that by following this method, possible misunderstandings can be avoided and decisions on the salvage and rehabilitation of structures can be based on performance data and technical analysis, thus reducing the need for individual judgement
    • 

    corecore